第13章 黑洞(1) (2/2)
恒基小说网 www.hengjishizheng.com,时间简史无错无删减全文免费阅读!
成一点的。这是大多数科学家的观点:爱因斯坦自己写了一篇论文,宣布恒星的体积不会收缩为零。其他科学家,尤其是他以前的老师,恒星结构的主要权威——爱丁顿的敌意使昌德拉塞卡放弃了这方面的工作,而转去研究诸如恒星团运动等其他天文学问题。然而,他之所以获得1983年诺贝尔奖,至少部分原因在于他早年所做的关于冷恒星的质量极限的工作。
昌德拉塞卡指出,不相容原理不能够阻止质量大于昌德拉塞卡极限的恒星发生坍缩。但是,根据广义相对论,这样的恒星会发生什么情况呢?1939年一位美国的年轻人罗伯特·奥本海默首次解决了这个问题。然而,他所获得的结果表明,用当时的望远镜去检测不会有任何观测结果。以后,第二次世界大战插入,奥本海默本人非常专心地从事原子弹研制。战后,由于大部分科学家被吸引到原子和原子核尺度的物理中去,因而大部分人忘记了引力坍缩的问题。但在20世纪60年代,现代技术的应用使得天文观测范围和数量大大增加,这重新激起人们对天文学和宇宙学的大尺度问题的兴趣。奥本海默的工作被一些人重新发现并推广。
现在,我们从奥本海默的工作中得到一幅这样的图象:恒星的引力场改变了光线在时空中的路径,使之和如果没有恒星情况下的路径不一样。光锥是表示闪光从其顶端发出后在时空中传播的路径。光锥在恒星表面附近稍微向内弯折。在日食时观察从遥远恒星发出的光线,可以看到这种偏折现象。随着恒星收缩,其表面的引力场变得更强大,而光锥向内偏折得更多。这使得光线从恒星逃逸变得更为困难,对于远处的观察者而言,光线变得更黯淡更红。最后,当恒星收缩到某一临界半径时,表面上的引力场变得如此之强,使得光锥向内偏折得这么厉害,以至于光线再也逃逸不出去 。根据相对论,没有东西能行进得比光还快。这样,如果光都逃逸不出来,其他东西更不可能:所有东西都会被引力场拉回去。这样,存在一个事件的集合或时空区域,光或任何东西都不可能从该区域逃逸而到达远处的观察者。现在我们将这区域称作黑洞,将其边界称作事件视界,而它和刚好不能从黑洞逃逸的光线的那些路径相重合。
如果你观察一个恒星坍缩并形成黑洞时,为了理解你所看到的情况,切记在相对论中没有绝对时间。每个观测者都有自己的时间测量。由于恒星的引力场,在恒星上某人的时间将和在远处某人的时间不同。假定在坍缩星表面有一无畏的航天员和恒星一起向内坍缩。他按照自己的表,每一秒钟发一信号到一个围绕着该恒星转动的航天飞船上去。在他的表的某一时刻,譬如11点钟,恒星刚好收缩到它的临界半径以下,此时引力场强大到没有任何东西可以逃逸出去,他的信号再也不能传到航天飞船了。随着11点趋近,他的伙伴从航天飞船上观看会发现,从该航天员发来的一串信号的时间间隔越变越长。但是这个效应在10点59分59秒之前是非常微小的。在收到10点59分58秒和10点59分59秒发出的两个信号之间,他们只需等待比1秒钟稍长一点的时间,然而他们必须为11点发出的信号等待无限长的时间。按照航天员的手表,光波是在10点59分59秒和11点之间由恒星表面发出;从航天飞船上看,那光波被散开到无限长的时间间隔里。在航天飞船上这一串光波来临的时间间隔变得越来越长,所以从恒星来的光显得越来越红、越来越淡,最后,该恒星变得如此之朦胧,以至于从航天飞船上再也看不见它:所余下的一切只是空间中的一个黑洞。不过,此恒星继续以同样的引力作用到航天飞船上,使飞船继续围绕着形成的黑洞旋转。但是由于以下的问题,上述场景不是完全现实的。一个人离开恒星越远则引力越弱,所以作用在这位无畏的航天员脚上的引力总比作用到他头上的大。在恒星还未收缩到临界半径而形成事件视界之前,这力的差别就足以将我们的航天员拉成意大利面条那样,甚至将他撕裂!
然而我们相信,在宇宙中存在大得多的天体,譬如星系的中心区域,它们遭受到引力坍缩而产生黑洞;一位在这样的物体上面的航天员在黑洞形成之前不会被撕开。事实上,当他到达临界半径时,不会有任何异样的感觉,甚至在通过永不回返的那一点时,都没注意到它。然而,随着这区域继续坍缩,只要在几个钟头之内,作用到他头上和脚上的引力之差会变得如此之大,以至于再将其撕裂。
罗杰·彭罗斯和我在1965年和1970年之间的研究指出,根据广义相对论,在黑洞中必然存在密度和时空曲率无限大的奇点。这和时间开端时的大爆炸相当类似,只不过它是一个坍缩物体和航天员的时间终点而已。在此奇点,科学定律和我们预言将来的能力都崩溃了。然而,任何留在黑洞之外的观察者,将不会受到可预见性失效的影响,因为从奇点出发的,不管是光还是任何其他信号,都不能到达他那儿。这个非凡的事实导致罗杰·彭罗斯提出了宇宙监督假想,它可以被意译为:“上帝憎恶裸奇点。”换言之,由引力坍缩所产生的奇点只能发生在像黑洞这样的地方,它在那里被事件视界体面地遮住而不被外界看见。严格地讲,这就是所谓弱的宇宙监督假想:它使留在黑洞外面的观察者不致受到发生在奇点处的可预见性崩溃的影响,但它对那位不幸落到黑洞里的可怜的航天员却是爱莫能助。
广义相对论方程存在一些解,我们的航天员在这些解中可能看到裸奇点:他也许能避免撞到奇点上去,相反地穿过一个“虫洞”来到宇宙的另一区域。看来这给在时空内的旅行提供了大的可能性。但是不幸的是,所有这些解似乎都是非常不稳定的;最小的干扰,譬如一个航天员的存在就会使之改变,以至于他还没能看到此奇点,就撞上去而终结了他的时间。换言之,奇点总发生在他的将来,而绝不会发生在他的过去。宇宙监督假想强的版本是说,在一个现实的解里,奇点总是要么整个存在于将来(如引力坍缩的奇点),要么整个存在于过去(如大爆炸)。我强烈地相信宇宙监督,这样我就和加州理工学院的基帕·索恩和约翰·普勒斯基尔打赌,认为它总是成立的。由于找到了一些解的例子,在非常远处可以看得见其奇点,所以我在技术的层面上输了。这样,我必须遵照协约还清赌债,也就是必须把他们的裸露遮盖住。但是我可以宣布道义上的胜利。这些裸奇点是不稳定的:最小的干扰就会导致这些奇点消失,或者躲到事件视界后面去。所以它们在实际情形下不会发生。
成一点的。这是大多数科学家的观点:爱因斯坦自己写了一篇论文,宣布恒星的体积不会收缩为零。其他科学家,尤其是他以前的老师,恒星结构的主要权威——爱丁顿的敌意使昌德拉塞卡放弃了这方面的工作,而转去研究诸如恒星团运动等其他天文学问题。然而,他之所以获得1983年诺贝尔奖,至少部分原因在于他早年所做的关于冷恒星的质量极限的工作。
昌德拉塞卡指出,不相容原理不能够阻止质量大于昌德拉塞卡极限的恒星发生坍缩。但是,根据广义相对论,这样的恒星会发生什么情况呢?1939年一位美国的年轻人罗伯特·奥本海默首次解决了这个问题。然而,他所获得的结果表明,用当时的望远镜去检测不会有任何观测结果。以后,第二次世界大战插入,奥本海默本人非常专心地从事原子弹研制。战后,由于大部分科学家被吸引到原子和原子核尺度的物理中去,因而大部分人忘记了引力坍缩的问题。但在20世纪60年代,现代技术的应用使得天文观测范围和数量大大增加,这重新激起人们对天文学和宇宙学的大尺度问题的兴趣。奥本海默的工作被一些人重新发现并推广。
现在,我们从奥本海默的工作中得到一幅这样的图象:恒星的引力场改变了光线在时空中的路径,使之和如果没有恒星情况下的路径不一样。光锥是表示闪光从其顶端发出后在时空中传播的路径。光锥在恒星表面附近稍微向内弯折。在日食时观察从遥远恒星发出的光线,可以看到这种偏折现象。随着恒星收缩,其表面的引力场变得更强大,而光锥向内偏折得更多。这使得光线从恒星逃逸变得更为困难,对于远处的观察者而言,光线变得更黯淡更红。最后,当恒星收缩到某一临界半径时,表面上的引力场变得如此之强,使得光锥向内偏折得这么厉害,以至于光线再也逃逸不出去 。根据相对论,没有东西能行进得比光还快。这样,如果光都逃逸不出来,其他东西更不可能:所有东西都会被引力场拉回去。这样,存在一个事件的集合或时空区域,光或任何东西都不可能从该区域逃逸而到达远处的观察者。现在我们将这区域称作黑洞,将其边界称作事件视界,而它和刚好不能从黑洞逃逸的光线的那些路径相重合。
如果你观察一个恒星坍缩并形成黑洞时,为了理解你所看到的情况,切记在相对论中没有绝对时间。每个观测者都有自己的时间测量。由于恒星的引力场,在恒星上某人的时间将和在远处某人的时间不同。假定在坍缩星表面有一无畏的航天员和恒星一起向内坍缩。他按照自己的表,每一秒钟发一信号到一个围绕着该恒星转动的航天飞船上去。在他的表的某一时刻,譬如11点钟,恒星刚好收缩到它的临界半径以下,此时引力场强大到没有任何东西可以逃逸出去,他的信号再也不能传到航天飞船了。随着11点趋近,他的伙伴从航天飞船上观看会发现,从该航天员发来的一串信号的时间间隔越变越长。但是这个效应在10点59分59秒之前是非常微小的。在收到10点59分58秒和10点59分59秒发出的两个信号之间,他们只需等待比1秒钟稍长一点的时间,然而他们必须为11点发出的信号等待无限长的时间。按照航天员的手表,光波是在10点59分59秒和11点之间由恒星表面发出;从航天飞船上看,那光波被散开到无限长的时间间隔里。在航天飞船上这一串光波来临的时间间隔变得越来越长,所以从恒星来的光显得越来越红、越来越淡,最后,该恒星变得如此之朦胧,以至于从航天飞船上再也看不见它:所余下的一切只是空间中的一个黑洞。不过,此恒星继续以同样的引力作用到航天飞船上,使飞船继续围绕着形成的黑洞旋转。但是由于以下的问题,上述场景不是完全现实的。一个人离开恒星越远则引力越弱,所以作用在这位无畏的航天员脚上的引力总比作用到他头上的大。在恒星还未收缩到临界半径而形成事件视界之前,这力的差别就足以将我们的航天员拉成意大利面条那样,甚至将他撕裂!
然而我们相信,在宇宙中存在大得多的天体,譬如星系的中心区域,它们遭受到引力坍缩而产生黑洞;一位在这样的物体上面的航天员在黑洞形成之前不会被撕开。事实上,当他到达临界半径时,不会有任何异样的感觉,甚至在通过永不回返的那一点时,都没注意到它。然而,随着这区域继续坍缩,只要在几个钟头之内,作用到他头上和脚上的引力之差会变得如此之大,以至于再将其撕裂。
罗杰·彭罗斯和我在1965年和1970年之间的研究指出,根据广义相对论,在黑洞中必然存在密度和时空曲率无限大的奇点。这和时间开端时的大爆炸相当类似,只不过它是一个坍缩物体和航天员的时间终点而已。在此奇点,科学定律和我们预言将来的能力都崩溃了。然而,任何留在黑洞之外的观察者,将不会受到可预见性失效的影响,因为从奇点出发的,不管是光还是任何其他信号,都不能到达他那儿。这个非凡的事实导致罗杰·彭罗斯提出了宇宙监督假想,它可以被意译为:“上帝憎恶裸奇点。”换言之,由引力坍缩所产生的奇点只能发生在像黑洞这样的地方,它在那里被事件视界体面地遮住而不被外界看见。严格地讲,这就是所谓弱的宇宙监督假想:它使留在黑洞外面的观察者不致受到发生在奇点处的可预见性崩溃的影响,但它对那位不幸落到黑洞里的可怜的航天员却是爱莫能助。
广义相对论方程存在一些解,我们的航天员在这些解中可能看到裸奇点:他也许能避免撞到奇点上去,相反地穿过一个“虫洞”来到宇宙的另一区域。看来这给在时空内的旅行提供了大的可能性。但是不幸的是,所有这些解似乎都是非常不稳定的;最小的干扰,譬如一个航天员的存在就会使之改变,以至于他还没能看到此奇点,就撞上去而终结了他的时间。换言之,奇点总发生在他的将来,而绝不会发生在他的过去。宇宙监督假想强的版本是说,在一个现实的解里,奇点总是要么整个存在于将来(如引力坍缩的奇点),要么整个存在于过去(如大爆炸)。我强烈地相信宇宙监督,这样我就和加州理工学院的基帕·索恩和约翰·普勒斯基尔打赌,认为它总是成立的。由于找到了一些解的例子,在非常远处可以看得见其奇点,所以我在技术的层面上输了。这样,我必须遵照协约还清赌债,也就是必须把他们的裸露遮盖住。但是我可以宣布道义上的胜利。这些裸奇点是不稳定的:最小的干扰就会导致这些奇点消失,或者躲到事件视界后面去。所以它们在实际情形下不会发生。