第17章 黑洞不是这么黑的(2) (1/2)
恒基小说网 www.hengjishizheng.com,时间简史无错无删减全文免费阅读!
因为能量不能无中生有,所以粒子反粒子对中的一个伴侣具有正能量,而另一个具有负能量。由于在正常情况下实粒子总是具有正能量,所以具有负能量的那一个粒子注定是短命的虚粒子。因此,它必须找到它的伴侣并与之相互湮灭。然而,因为实粒子要花费能量抵抗大质量物体的引力吸引才能将其推到远处,一颗实粒子的能量在接近大质量物体时比在远离时更小。正常情况下,这粒子的能量仍然是正的。但是黑洞里的引力是如此之强,甚至在那里实粒子的能量都可以是负的。因此,如果存在黑洞,带有负能量的虚粒子落到黑洞里可能变成实粒子或实反粒子。这种情形下,它不再需要和它的伴侣相互湮灭了。它被抛弃的伴侣也可以落到黑洞中去。或者由于它具有正能量,也可以作为实粒子或实反粒子从黑洞的邻近逃走 。对于一个远处的观察者而言,它就显得是从黑洞发射出来的粒子一样。黑洞越小,负能粒子在变成实粒子之前必须走的距离越短,这样黑洞发射率和表观温度也就越大。
辐射出去的正能量会被落入黑洞的负能粒子流平衡。
按照爱因斯坦方程E=mc2(E是能量,m是质量,c为光速),能量和质量成正比。因此,往黑洞去的负能量流减小它的质量。随着黑洞损失质量,它的事件视界面积变得更小,但是它发射出的辐射的熵过量地补偿了黑洞的熵的减少,所以第二定律从未被违反过。
还有,黑洞的质量越小,其温度就越高。这样,随着黑洞损失质量,它的温度和发射率增加,因而它的质量损失得更快。当黑洞的质量最后变得极小时会发生什么,人们并不很清楚。但是最合理的猜想是,它最终将会在一次巨大的,相当于几百万颗氢弹爆炸的辐射暴中消失殆尽。
一个具有几倍太阳质量的黑洞只具有一千万分之一度的绝对温度。这比充满宇宙的微波辐射的温度(大约2.7K)要低得多,所以这种黑洞的辐射比它吸收的还要少。如果宇宙注定继续永远膨胀下去,微波辐射的温度就会最终减小到比这黑洞的温度还低,它就开始损失质量。
但是即使到了那时候,它的温度是如此之低,以至于要用100亿亿亿亿亿亿亿亿年(1后面跟66个0)才全部蒸发完。这比宇宙的年龄长得多了,宇宙的年龄大约只有100至200亿年(1或2后面跟10个0)。另一方面,正如第六章提及的,在宇宙的极早期阶段存在由于无规性引起的坍缩而形成的质量极小的太初黑洞。这样的小黑洞会有高得多的温度,并以大得多的速率发出辐射。具有10亿吨初始质量的太初黑洞的寿命大体和宇宙的年龄相同。初始质量比这小的太初黑洞应该已蒸发完毕,但那些比这稍大的黑洞仍在辐射出X射线以及伽马射线。这些X射线和伽马射线像光波,只是波长短得多。这样的黑洞几乎不配这黑的绰号:它们实际上是白热的,正以大约1万兆瓦的功率发射能量。
一个这样的黑洞可以开动10个大型的发电站,只要我们能够驾驭黑洞的功率就好了。然而,这是非常困难的:这黑洞把和一座山差不多的质量压缩成比万亿分之一英寸,亦即一个原子核的尺度还小!如果你在地球表面上有这样的一个黑洞,就无法阻止它透过地面落到地球的中心。它会穿过地球而来回振动,直到最后停在地球的中心。所以仅有的放置黑洞并利用之发射出能量的地方是围绕着地球的轨道,而仅有的使它围绕地球公转的办法是,用在它之前的一个大质量的吸引力去拖它,这和在驴子前面放一根胡萝卜颇为相像。至少在最近的将来,这个设想并不现实。
但是,即使我们不能驾驭来自这些太初黑洞的辐射,我们观测到它们的机遇又如何呢?我们可以寻找太初黑洞在其主要生存期里发出的伽马射线辐射。虽然大部分黑洞在很远以外的地方,从它们来的辐射非常弱,但是从它们全体来的总辐射是可以检测得到的。我们确实观察到这样的一个伽马射线背景:观察到的强度随频率(每秒波动的次数)的变化。然而,这个背景可以,并且大概是由除了太初黑洞以外的过程产生的。如果每立方光年平均有300个太初黑洞,它们所发射的伽马射线的强度应如何随频率变化。因此可以说,伽马射线背景的观测并没给太初黑洞提供任何肯定的证据。但它们明确告诉我们,在宇宙中平均每立方光年不可能有多于300个太初黑洞。这个极限表明,太初黑洞最多只能构成宇宙中一百万分之一的物质。
由于太初黑洞是如此稀罕,似乎不太可能存在一个近到我们可以将其当作一个单独的伽马射线源来观察的黑洞。但是由于引力会将太初黑洞往任何物体处拉近,所以它们在星系里面和附近应该会更稠密得多。虽然伽马射线背景告诉我们,平均每立方光年不可能有多于300个太初黑洞,但它并没有告诉我们,太初黑洞在我们星系... -->>
因为能量不能无中生有,所以粒子反粒子对中的一个伴侣具有正能量,而另一个具有负能量。由于在正常情况下实粒子总是具有正能量,所以具有负能量的那一个粒子注定是短命的虚粒子。因此,它必须找到它的伴侣并与之相互湮灭。然而,因为实粒子要花费能量抵抗大质量物体的引力吸引才能将其推到远处,一颗实粒子的能量在接近大质量物体时比在远离时更小。正常情况下,这粒子的能量仍然是正的。但是黑洞里的引力是如此之强,甚至在那里实粒子的能量都可以是负的。因此,如果存在黑洞,带有负能量的虚粒子落到黑洞里可能变成实粒子或实反粒子。这种情形下,它不再需要和它的伴侣相互湮灭了。它被抛弃的伴侣也可以落到黑洞中去。或者由于它具有正能量,也可以作为实粒子或实反粒子从黑洞的邻近逃走 。对于一个远处的观察者而言,它就显得是从黑洞发射出来的粒子一样。黑洞越小,负能粒子在变成实粒子之前必须走的距离越短,这样黑洞发射率和表观温度也就越大。
辐射出去的正能量会被落入黑洞的负能粒子流平衡。
按照爱因斯坦方程E=mc2(E是能量,m是质量,c为光速),能量和质量成正比。因此,往黑洞去的负能量流减小它的质量。随着黑洞损失质量,它的事件视界面积变得更小,但是它发射出的辐射的熵过量地补偿了黑洞的熵的减少,所以第二定律从未被违反过。
还有,黑洞的质量越小,其温度就越高。这样,随着黑洞损失质量,它的温度和发射率增加,因而它的质量损失得更快。当黑洞的质量最后变得极小时会发生什么,人们并不很清楚。但是最合理的猜想是,它最终将会在一次巨大的,相当于几百万颗氢弹爆炸的辐射暴中消失殆尽。
一个具有几倍太阳质量的黑洞只具有一千万分之一度的绝对温度。这比充满宇宙的微波辐射的温度(大约2.7K)要低得多,所以这种黑洞的辐射比它吸收的还要少。如果宇宙注定继续永远膨胀下去,微波辐射的温度就会最终减小到比这黑洞的温度还低,它就开始损失质量。
但是即使到了那时候,它的温度是如此之低,以至于要用100亿亿亿亿亿亿亿亿年(1后面跟66个0)才全部蒸发完。这比宇宙的年龄长得多了,宇宙的年龄大约只有100至200亿年(1或2后面跟10个0)。另一方面,正如第六章提及的,在宇宙的极早期阶段存在由于无规性引起的坍缩而形成的质量极小的太初黑洞。这样的小黑洞会有高得多的温度,并以大得多的速率发出辐射。具有10亿吨初始质量的太初黑洞的寿命大体和宇宙的年龄相同。初始质量比这小的太初黑洞应该已蒸发完毕,但那些比这稍大的黑洞仍在辐射出X射线以及伽马射线。这些X射线和伽马射线像光波,只是波长短得多。这样的黑洞几乎不配这黑的绰号:它们实际上是白热的,正以大约1万兆瓦的功率发射能量。
一个这样的黑洞可以开动10个大型的发电站,只要我们能够驾驭黑洞的功率就好了。然而,这是非常困难的:这黑洞把和一座山差不多的质量压缩成比万亿分之一英寸,亦即一个原子核的尺度还小!如果你在地球表面上有这样的一个黑洞,就无法阻止它透过地面落到地球的中心。它会穿过地球而来回振动,直到最后停在地球的中心。所以仅有的放置黑洞并利用之发射出能量的地方是围绕着地球的轨道,而仅有的使它围绕地球公转的办法是,用在它之前的一个大质量的吸引力去拖它,这和在驴子前面放一根胡萝卜颇为相像。至少在最近的将来,这个设想并不现实。
但是,即使我们不能驾驭来自这些太初黑洞的辐射,我们观测到它们的机遇又如何呢?我们可以寻找太初黑洞在其主要生存期里发出的伽马射线辐射。虽然大部分黑洞在很远以外的地方,从它们来的辐射非常弱,但是从它们全体来的总辐射是可以检测得到的。我们确实观察到这样的一个伽马射线背景:观察到的强度随频率(每秒波动的次数)的变化。然而,这个背景可以,并且大概是由除了太初黑洞以外的过程产生的。如果每立方光年平均有300个太初黑洞,它们所发射的伽马射线的强度应如何随频率变化。因此可以说,伽马射线背景的观测并没给太初黑洞提供任何肯定的证据。但它们明确告诉我们,在宇宙中平均每立方光年不可能有多于300个太初黑洞。这个极限表明,太初黑洞最多只能构成宇宙中一百万分之一的物质。
由于太初黑洞是如此稀罕,似乎不太可能存在一个近到我们可以将其当作一个单独的伽马射线源来观察的黑洞。但是由于引力会将太初黑洞往任何物体处拉近,所以它们在星系里面和附近应该会更稠密得多。虽然伽马射线背景告诉我们,平均每立方光年不可能有多于300个太初黑洞,但它并没有告诉我们,太初黑洞在我们星系... -->>
本章未完,点击下一页继续阅读